On Riemannian manifolds with homogeneous holonomy group ${\rm Sp}(n)$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finsler manifolds with non-Riemannian holonomy

The aim of this paper is to show that holonomy properties of Finsler manifolds can be very different from those of Riemannian manifolds. We prove that the holonomy group of a positive definite non-Riemannian Finsler manifold of non-zero constant curvature with dimension > 2 cannot be a compact Lie group. Hence this holonomy group does not occur as the holonomy group of any Riemannian manifold. ...

متن کامل

Flat Homogeneous Pseudo-Riemannian Manifolds

The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...

متن کامل

Parallel spinors and holonomy groups on pseudo-Riemannian spin manifolds

We describe the possible holonomy groups of simply connected irreducible non-locally symmetric pseudo-Riemannian spin manifolds which admit parallel spinors.

متن کامل

Primitive Compact Flat Manifolds with Holonomy Group

From an important construction of Calabi (see [Ca], [Wo]), it follows that the compact Riemannian flat manifolds with first Betti number zero are the building blocks for all compact Riemannian flat manifolds. It is, therefore, of interest to construct families of such objects. These are often called primitive manifolds. Hantzsche and Wendt (1935) constructed the only existing 3-dimensional comp...

متن کامل

Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds

For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1958

ISSN: 0040-8735

DOI: 10.2748/tmj/1178244665